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ABSTRACT 

TO every one-sided one-dimensional cellular automaton F with neighbour- 

hood radius r we associate its canonical factor defined by considering 

only the first r coordinates of all the images of points under the powers of 

F. Whenever the cellular automaton is surjective, this factor is a subshift 

which plays a primary role in its dynamics. In this article we study the 

class of positively expansive one-sided cellular automata, i.e. those that 

are conjugate to their canonical factors. This class is a natural generalisa- 

tion of the toggle or permutative cellular automata introduced in [He]. We 

prove that the canonical factors of positively expansive one-sided cellular 

automata are mixing subshifts of finite type that are shift equivalent to 

full shifts. Moreover, the uniform Bernoulli measure is the unique mea- 

sure of maximal entropy for F. Consequently, their natural extensions 

are Bernoulli. We also describe a family of non-permutative positively 

expansive cellular automata. 
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1. I n t r o d u c t i o n  

Cellular automata (CA for short) were first used for modelling various physical 

and biological processes, and more recently also in computer science. The study of 

the mathematical properties of one-dimensional cellular automata started with 

the work of Hedlund [He]; various articles concerning different aspects of the 

dynamics of CA have been published since, for instance [Cov], [Cou], [G], [Hu],. 

[L1], [M], [S], [W]. 

Surjective cellular automata are particularly attractive for ergodicians: in this 

case A N or A z, endowed with the continuous onto self-map F defining the automa- 

ton, is a topological flow, in other words a dynamical system "in equilibrium"; 

another nice feature is that the uniform measure is always invariant with respect 

to F.  Among them, the class of permutative CA (or toggle a u t o m a t a ) ,  intro- 

duced by Hedlund in [He], has been thoroughly studied; its ergodic properties 

have been recently considered in IS]. The class of positively expansive cellular 

automata considered in this paper contains permutative automata on A N. 

In this article we are only dealing with one-s ided cellular automata (i.e. those 

acting on AN). To every surjective CA F: A N --* A N of radius r we associate its 

canonica l  f ac to r  SF, generated by the first r coordinates of F n (x), n E N. One- 

sided permutative cellular automata exhibit the following dynamical properties: 

the canonical factor is a full shift and the flow (A N, F)  is conjugate to (SF, a). 
In this paper we deal with the symbolic dynamics of the family of CA that,  

as topological flows, are conjugate to one-sided subshifts - -  in other words, the 

abstract family of pos i t ive ly  expans ive  one-sided cellular automata - -  and 

their ergodic behaviour when A N is endowed with the uniform measure. Except 

in the Introduction, whenever we use the word expansive in this article we mean 

positively expansive. 

It turns out that this expansiveness assumption has many strong symbolic and 

measure-theoretic consequences. Thus, on the symbolic side, every positively 

expansive one-sided CA is surjective, conjugate to a topologically mixing subshift 

of finite type that  is shift equivalent to a full shift on kl letters. 

Measure-theoretically, we use the previous results in order to identify the uni- 

form measure A over A N to the Parry measure on (SF,a); thus A has maximal 

entropy under the action of F - -  this is not true in general for surjective CA, as 

can be deduced from [Cov] and ILl] - -  and it is the unique measure with this 

property. 
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Finally, two examples, of completely different nature, allow us to show that  the 

family of positively expansive cellular automata is substantially wider than that  

of toggle automata, for which Shereshevsky IS] first proved the same measure- 

theoretic results. 

The article is laid out in four sections. Section 2 is devoted to definitions, 

examples and preliminary results. The main results are given in Section 3: we 

prove some combinatorial lemmas, from which one deduces the mixing property 

and the entropy of the CA, then show that  the entropy of A is the same, which 

proves that  it is the Parry measure; finally this enables us to state an arithmetical 

condition for expansiveness and to prove the shift equivalence. We finally describe 

a family of positively expansive cellular automata which are not permutative even 

in a weaker sense; they are those representing the multiplication by kl in base p, 

when p = kl k2 and k2 divides a power of kl. 

Finally here are a few remarks about positively expansive two-s ided  cellu- 

lar automata (i.e., acting on AZ). Recently Nasu IN] proved a result that  is 

strongly linked with ours: "any positively expansive endomorphism of a two- 

s ided mixing subshift of finite type is conjugate to a one-sided full shift". This 

resultdescribes completely the topological dynamics of this class of cellular au- 

tomata, but there is no statement concerning the measure-theoretic dynamics of 

the system. On the other hand, if F is one-sided positively expansive, then its ex- 

tension to A z is never  positively expansive, which shows that  the two questions 

are completely distinct. Nevertheless the underlying combinatorics are deeply 

similar; for instance, it is very easy to prove analogues of Propositions 2.2 to 2.4 

for two-sided CA, not very hard to prove that of Theorem 3.8 (this is done in 

[Kfi]), and we can also state that  ~ is the maximal measure for the dynamics. 

But the technicalities become increasingly different as one goes farther into the 

combinatorics of words, while the proofs do not really require new ideas. Also, 

the only positively expansive CA on A z we know are permutative in the strictest 

sense and were already studied in [He] and [S]. These are our reasons for choosing 

to treat the one-sided case only. 

ACKNOWLEDGEMENT: We are very grateful to Petr Kfirka for allowing us to 

include his enlightening result that a positively expansive CA is always conjugate 

to a one-sided subshift of finite type and for other useful remarks; and to Mike 

Boyle for pointing out a serious mistake in the first version, for acquainting us 

with Nasu's results and for many comments. We thank the referee for suggesting 
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many improvements. 

2. P r e l i m i n a r i e s  

2.1 SYMBOLIC SYSTEMS. In this article we call (topological) f low a compact 

metric space X endowed with a surjective endomorphism T. Consider two flows 

(X, T) and (X' ,  T'). We say that (X' ,  T') is a factor of (X, T) if there exists a 

continuous onto map ~r: X ~ X t such that  T t o r =  roT;  if r is also 1-to-1 (X, T) 

and (X t, T t) are said to be conjugate. Let # be a T-invariant measure. We endow 

(X',  T ')  with the invariant measure #' defined by #'(A') = 7r/~(A') = #(Tr-l(A')) 

for any Borel set A t of X t. 

A topological flow (X, T) is transitive if for any pair of open sets U, V of X 

there is a positive integer n such that U N T - n V  ~ 0. Moreover, if there is no E 51 

(only depending on U and V) such that  for all n ~ no, U N T - n V  is not empty, 

we say that  the system is topologically mixing or simply mixing .  The mixing 

and transitivity properties are conjugacy invariants. 

In this article X is always a symbolic space. Let A be a finite alphabet. We 

denote by A* the set of finite sequences or words  on A, including the e m p t y  

w o r d  1; in other words, A* = Uner~ A'~ where A '~ is the set of words of length n 

of A*; Iwl denotes the length of the word w E A*. A l anguage  L is an arbitrary 

subset of A*; we denote by Ln the set of words of length n of L. 

Let K = 51 or Z. A g is the set of infinite sequences x = (xi) ieg,  where 

xi E A; we call them conf igura t ions .  For i < j in K put x( i , j )  = x i . . . x j .  

Let x be a configuration and w = w0 . - 'wn-x  be a word of length n; we denote 

by wx the configuration y defined by y(0, n -  1) = w and yn+i = xi, i E N. 

A h" is endowed with the product topology and the shif t  a: A g ~ A K, or(x) = 

(xi+x)ieK. When K = Z, a is a homeomorphism. The family of cylinder sets 

[w]i = {x e AI":: x(i, i+ [w[-  1) = w}, where w E A* and i E K,  is a fundamental 

base of clopen neighbourhoods of A K. For this topology A K is a compact metric 

space; the distance is defined by 

d(x, y) = ~ di (x, y) where di(x, y) = 1 if xi ~ yi and 0 otherwise; 
21i1+1 ' 

iEK 

two configurations are close to each other with respect to this distance if for some 

large n their coordinates coincide from - n  to +n.  The flow (A K, or) is called full  

shi f t  (one-sided full shift when K = 51, or simply full shift when K = Z). 
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A subshift or symbolic flow is a closed shift-invariant subset S of A K 

endowed with a. In general we identify the flow (S, a) with the space S. The 

language associated to the subshift S is 

L(S) = (w �9 A*: 3 x �9 S,i  �9 K, such that x( i , i+  Iwl - 1) = w}. 

It is well known that S, whether one- or two-sided, is completely described by 

its language, and a one-sided subshift is the projection of a two-sided one. 

In this article subshi f t s  o f  f ini te  t y p e  (SFT) play a prominent role. A 

subshift S c A K is said to be of finite type if there exist a positive integer N 

(assumed to be minimal), and a collection L of words of length N, such that  

x E S if and only i f x ( i , i + N -  1) E L for a l l i  E K.  The integer N is 

called the o rde r  of S. Any SFT S of order N is conjugate to a SFT of order 

2 (called Markov system), by the map which associates to each x E S the point 

y = (x(i, i + N - 2))i~K E LN-I (S) K. A Markov system, S _C A K, is associated 

to an incidence matrix M(S) indexed by A such that the entry corresponding to 

(a, b) E A 2 is equal to 1 if ab E L2(S), 0 otherwise. The mixing properties of 

the flow (S, a) are deduced from properties of its transition matrix. Thus, S is 

transitive if for all (a, b) �9 A 2 there exists n �9 51 such that M(S)n(a, b) > 0, and 

S is mixing if n can be chosen independently of the entry (a, b). 

In the category of measurable dynamical systems, where topological struc- 

tures are replaced by measurable ones, the natural notion of equivalence between 

systems is i somorph i sm,  that  is, existence of a bimeasurable bijection defined 

over a set of measure one, exchanging the measures and transformations. 

2.2 ENTROPY. Let (X, T) be a topological flow and # be a T-invariant measure. 

First, let us recall the notions of topological and measure-theoretic entropy. 

For defining topological entropy one must introduce some additional defini- 

tions. Let "/~ be an open cover of X: we denote by H(7~) the real number 

inf{logcard(7~)}, where the inf is taken over the set of finite subcovers Ts ~ of 7~. 

Let S be another subcover of X; we say that 7~ is f iner than S, and denote this 

by S < ~ ,  if for all U E 7~ there exists V E S such that U c V. This implies 

H(S) <_ a(7~). 

Denote by 7~ V S the cover made up of all the intersections R f7 S, where R E 

and S E S. The topologica l  e n t r o p y  of  t h e  cover  7~ is the (well defined) 
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nonnegative number 

F.  B L A N C H A R D  A N D  A.  M A A S S  Isr.  J .  M a t h .  

h(R'T)= lim 1 H ( ~ / T - i R )  \ i=0 

Whenever S < R one has h(S, T) < h(R, T). 
By definition the topological  e n t r o p y  of a flow (X, T) is 

htop(X, T) = sup h(R, T), 

where the sup is taken over all finite open covers of X. 

Here is a list of classical properties of topological entropy we shall use in the 

sequel; for more details see [DGS]. 

(1) Suppose that (T~),eN is a generator, i.e. an increasing family of open 

covers of X with the property that  for any other open cover 7~ of X there is 

n E N such that  7~ _< 7~,. Then, 

htop(X, T) = T). 

A consequence is that for a subshift S one has 

htop(S) = lim 1 logL,(S) .  
n ~ o o  n 

(2) If (X ' ,T ' )  is a factor of (X,T) then htop(X',T') < htop(S,T). 
(3) Let S C_ A K be a Markov system; then htop(S) = log~, where ~ is the 

maximal eigenvalue of its transition matrix. 

We shall only use the definition of measure-theoretic entropy for measures on 

subshifts. Consider a subshift X C_ A K, where K = 51 or Z. The e n t r o p y  of  

(X, T) with respect to the invariant measure # is 

(2.1) h~,(X,T) = -  lira -1 Z #([w]o)log#([w]o). 
n ~ o o  n 

wEL,,(X) 

In the general case, if the flows (X, T) and (X t, T ~) are conjugate by the map 

rr: X ~ X', then h~,(X,T) = h,~,(X',T'). 
Both notions of entropy, topological and measure-theoretic, are linked by the 

classical "variational principle" 

htop(X, T) = sup h~,(X, T), 

where the sup is taken over the set of invariant measures of the flow (X, T). A 

measure p for which h~,(X, T) = htop(X, T) is said to be a m e a s u r e  of  m a x i m a l  

en t ropy .  
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2 . 3  CELLULAR AUTOMATA. A one-sided ce l lu lar  a u t o m a t o n  (CA for short) 

is a map F: A N ~ A N defined for x = (xi)ieN E A N, i E N by 

F ( x ) ,  = Y(x~X~+l .... x~+,), 

where f :  A r+l ~ A is a given local  m a p  or rule. The integer r is called 

the (neighbourhood) r ad ius  of the CA. F is continuous and commutes with the 

shift a. The local rule f can also be applied to the words of length 

m > r + l :  

f ( a l , . . . , a m )  = f ( a l , . . . , a r + l ) ' " f ( a m - r , . . . , a m )  for all ( a l , . . . , a m )  e A m . 

For w, w' E A* U A N, we say that w ~ is a successor  of w with respect to f ,  

= = , A N and denote this by w ~ w', if there are x ~  w y ~  and x~, w y~, in such 

that  F ( x ~ )  = xw,.  

The following proposition, easily deduced from a result of Hedlund 

([He,theorem 5.4]), is a very useful combinatorial characterization of onto CA. 

PROPOSITION 2.1: L e t  F : A N ~ A N be a CA.  T he  fol lowing condi t ions  are 

equivalent:  

(i) F is onto. 

(ii) For any w C A*, card({w'  e At<+~: f(w') = w}) = card(A) ~. 

A direct consequence is that the uniform Bernoulli measure A of A N defined by 

1 
A([w]i) - card(A)n, for all w E A n, i E N, 

is invariant with respect to F whenever the cellular automaton is surjective. 

Let F: A N ~ A N be an onto CA of radius r. We associate to F,  in a natural 

way, its canon ica l  subsh i f t  

S F = { y E ( A ~ ) N :  3 x E A  N, such t h a t y i = F i ( x ) ( 0 ,  r - 1 ) ,  i E N } .  

It is clear that SF is closed and shift-invariant. The flow (SF, a) is a sym- 

bolic factor of (AN, F )  through the factor map 7rE : A N ~ S F  defined by 

7rF(x)i = F i (x ) (O,  r - 1) for all x E A N, i E N. In other words 7rE associates to 

each point of A N its itinerary with respect to the partition 7~ = {[w]0: w e At}. 

This application is in general not bijective and the language L(SF) is context- 

sensitive (see, for example, [G]). In the sequel we shall endow SF with the invari- 

ant measure AF = ~rf(A). 
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The subshift SF is developing into an important  tool for the study of one-sided 

cellular au tomata  F (cf. [Cov]); it is easy to show that  its entropy is equal to 

that  of F.  

2.4 POSITIVELY EXPANSIVE CELLULAR AUTOMATA. An endomorphism T of a 

compact  metric space X is p o s i t i v e l y  e x p a n s i v e  if there is a constant e > 0 such 

that  for all x, y E X,  x r y, there exists n E N for which d(Tn(x) ,T '~(y) )  > e, 

where d(.,-) denotes the distance in X. Expansiveness is classically defined for 

homeomorphisms, and the formal definition is the same except that  n E Z. Since 

CA maps are generally not one-to-one, the natural notion in the present setting is 

that  of positive expansiveness. In the sequel, whenever we use the word expansive 

this means positively expansive. 

Let us first describe some examples of positively expansive CA. 

Example  1: Toggle automata: A cellular automaton F: A N -~ A N is a toggle 

automaton if for every w E A r there is a permutation p~ of A such that  .f(wa~) = 

p~(ar) for all a ,  E A. 

If F is a toggle automaton it is easy to check that  for all w, w ~ E A * there 

exists a unique w" E A * such that  ww"  f w ~. Moreover, this property implies 

that  F is positively expansive and that  the canonical factor SF is equal to (A~) N. 

Example  2: A generaIisation: We construct a family of au tomata  that  are per- 

mutat ive in a weaker sense: a permutat ion is attached to every word in a finite 

set C, but here the set is no longer A *. Fix an integer r > 2 and consider a finite 

language C C A r U A ~-1 such that: 

(1) C is a complete prefix code: if co . . . c k  E C, then for all 0 _< i < k, 

co..-c~ ~ C, and if x E A N , there exist (unique) c E C and y E A ~ such that  

x - - c y .  

(2) If c 0 " - ' c ~ - I  E C, then for all a E A, c l ' . . c , - 2 a  E C. 

For instance, for r = 3 and A = {0, 1}, C = {00,01, 11,100, 101} satisfies these 

two conditions. 

Now, we associate to each word w E C a permutat ion p~: A --, A with the 

following property: let w = a o a l "  .a~_2a E C, w' = a o a l " "  a , - 2 a  ~ E C, where 

a ~ at; if for b, b ~ E A, p~(b) = p~,(b ~) then P(al...,~._2o)(b) ~ P(,~...a._2c,,)(b'). 

This choice is possible: first fix arbitrarily the permutations associated with the 

words of length r - 1, and then choose the missing ones in such a way that  the 

property holds. 
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Finally, define the cellular automaton Fc: A N ~ A N such that for all x E A N 

and i E N, Fc(x) i  = P~,,(xi+t~l), where w is the unique prefix of x( i ,  i + r) in C. 

Evidently when C fq A ~ = 0 we have defined a toggle automaton. 

For Fc the following holds: for all w, w' E A r-1 there is a unique a E A 

such that wa S_s w ~. It follows that Fc is positively expansive and that SFc is 

conjugate to ((Ar-1)N,a).  

It seems likely that one might define a larger, more natural class of 

"permutation automata",  retaining the expansiveness property. 

Here are some elementary properties of positively expansive CA. 

PROPOSITION 2.2: Let  F be a posi t ively  expansive CA on AM; then F is onto. 

Proof'. Let k = card(A). (F(AN),a) is a factor of (A v{,a); if x E F ( A  N) 

and F(y )  = x, since F is expansive there exists r '  E N such that 

( P ( y ) ( O , r ' -  1))ion determines y, consequently x has a bounded number of 

preimages by F. Therefore h(AN,a)  = h ( F ( A N ) , a )  = logk; but the only sub- 

shift of A TM having this entropy is A N itself; hence F ( A  N) = A N. I 

PROPOSITION 2.3: Let  F: A N ---* A N be a CA. The  two following conditions are 

equivalent: 

(i) F is posi t ively  expansive; 

(ii) (A N, F)  and ( SF , a) are topologically conjugate. 

Proof'. Assume F is expansive with expansiveness constant e, and take r(e) E N 

such that d(x,  y) > ~ if and only if x(0, r(~) - 1) # y(0, r(e) - 1), for x, y E A N. 

We claim one can choose r(e) _< r, where r is the radius of F: if this is false, there 

are two points x :/: y E A N such that 7rF(X) = ~rt~(y) (even if for some n E N, 

F n ( x ) ( r , r ( e )  - 1) :/: Fn(y ) ( r , r ( e )  - 1)). Fix w E A r(~) and consider the points 

x~  = w x  and y,o = wy: for all i E N, Fi(xw)(O,r (e)  - 1) = Fi(y~o)(O,r(e) - 1), 

which is a contradiction. Thus if F is expansive 1rE(x) # 7rF(y) for x # y in A TM, 

and r E  is a conjugacy map. The sufficient condition is straightforward. I 

The following lemma reminds one of the characterizations of shift-commuting 

or right resolving maps in Symbolic Dynamics. It relies on a simple compactness 

argument. 

LEMMA 2.4: Let  F: A N --, A s be a posi t ively  expansive CA. There are a posit ive 

integer 2, and a map f:  Lt+I(SF) ~ A ~ such that for ali w = w o . . . w t  E 



158 F. B L A N C H A R D  AND A. MAASS Isr. J. Math .  

Lt+I(SF) and x E A N such that F i ( x ) ( 0 , r -  1) = w~, i = 0 , . . . , g ,  one has 

x(r, 2r - 1) = ](w).  

Remark  2.5: Given a finite subset I E N 2, by suitably many iterations of Lemma 

2.4 one obtains that there is n E N such that Fi(x)(O,r  - 1), i = 0 , . . . , n  

completely determine the set of coordinates (FJ(x))k,  (j, k) E I. 

Lemma 2.4 expresses the existence of the t r a n s p o s e d  flow (SF, F)  of a posi- 

tively expansive CA F, where F = 7r E o o -r o 7rF 1 iS alSO surjective; its local rule 

] is defined as follows: if y, y' E SF and ~'(y) = y', then y~ = ](y( i ,  i + g)) for 

any i E N. Obviously (SF, F) is also positively expansive. 

3.  R e s u l t s  

In this section F is always a one-sided CA with radius r. An important case is 

when r = 1. Notice that F is always conjugate to a CA F': (Am) s ---, (Am) r~ with 

radius equal to 1. Indeed, define the local rule f '  : (Am) 2 --+ A r associated to F ~ 

by f ' ( w l ,  w2) = f ( w l ,  w2) for wl, w2 E Am. The map r : A s ~ (At) N such that 

r = x(ir,  ir  + r - 1) for every x E A N and i E N defines a conjugacy between 

(A N, F)  and ((Am) N, F~). Naturally if F is positively expansive the conjugate 

map F I also is. 

The class of positively expansive one-sided CA with radius 1 will be called 

(El) .  

3.1 TOPOLOGICAL PROPERTIES. A cellular automaton is said to be r igh t -  

closing if there is n E N such that if a0 / b0. . .  b,~-x, ao E A m, b0. . .bn-x E A ~'~, 

then there is a unique al E A m such that x (0 , r  - 1) = ao and F(x)(O, rn - 1) = 

b0. . .  b , - i  imply that x(r, 2r + 1) = al.  

LEMMA 3.1: Positively expansive CA are right-closing. 

Proof." Choose n = g as given by Lemma 2.4 and take ao E A ~, bo'-" b,-x E A ~" 

such that  ao ~ bo--- b,~-l. The condition F(x)(O, r n -  1) = b o " -  b,~_ l completely 

determines Fi(x)(O, r -  1), i = 1 . . . n ;  together with x(0, r -  1) = ao, by Lemma 

2.4 this determines x(r, 2r + 1). I 

The next two results are essentially in [Kfi]. The first describes a property 

of right-closing CA (which are not necessarily expansive). The claim at the 

beginning of the proof was first proved by Kitchens [Ki]. 
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PROPOSITION 3.2: Right-closing CA are open. 

Proof." By recoding assume F is a right-closing CA with radius 1 and let n be 

as in the definition of right-closing maps. We prove the following property: 

ao E A and bo.. .  bn_l E A '~ are such that ao ~ bo' . .  bn-1. Then for all ~3 E A 

there is a unique a E A such that  aoa ~ bo ' "  bn_lt3. 

Suppose that  the claim is not true, then there exist no, 13 E A and b o ' "  bn-1 E 

A n with ao ~ bo...b,~_l but bo..-b,~-l~ is not a successor of no. Put  A = 

{ao, a l , . . . ,  alAl_l}. 
Since F is onto there is a e A such that the word bo.. "bn-1/~ is one of its 

successors. Without loss of generality assume that al ~ b0"." br t - l~  and take 

v0"" "vn E A n+l such that  f ( a l v o . . ,  v,~) = bo.. .  bn-l~. Obviously 

a l v o ' "  vnao ~ bo ' "  bn_lj36bo", b,~-I 

for some 6 E A, but wl = bo. . .  b,~-l~$bo.., b,~-l~ is not a successor of al  be- 

cause by right-closingness any preimage of w~ must have the suffix a~vo..,  vnao. 

Therefore, wl is a successor neither of ao nor of al. 

We can repeat the same construction to extend the word w~ to the right until 

one obtains a word w E A* without a preimage in A*, which is a contradiction. 

This proves the claim. 

Thus the image of any cylinder set is a finite union of cylinder sets; therefore 

F is an open map. | 

THEOREM 3.3: Let F be a positively expansive CA. Then it is conjugate to a 

subshift of finite type. 

Proof." By Proposition 3.2, F is open. This implies that the conjugate map 

a: S t  -~ SF is also open. Parry's result that one-sided subshifts for which the 

shift is an open map are exactly the SFT [P2] ends the proof. | 

Suppose N > g is an order of the subshift of finite type SF, where t is the 

constant from Lemma 2.4, which is also equal to the right-closing constant. 

LEMMA 3.4: Let F : A N -* A s be a CA of type (El). Suppose that n o ' "  aN-1 E 

A N and bl""bN-1 E A N-1 are such that ao ~ b l . . . bN-1  and for all i E 

{0 , . . . ,  N - 2}, f~(b l . . ,  bN_~)(0) = a~+l. Then for all b'1.., b~_~ E A ~v-~ such 

that f~(b'~.., b~v_l)(0) = a~+l, i e { 0 , . . . , N  - 2}, one has ao ~ b~.." b~v_l. 

Proo~ By hypothesis a o . " a N - i  E LN(SF). Let b~...b~v_l E A N-1 be such 

that  f i ( b ' l ' "  b~v_l)(0) = a~+l, i e {0 , . . . ,  N - 2 } ,  and consider the configuration 
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- '  bl . . . . . .  ZoZ 1 . �9 A r~, where (z~)ieN is arbitrary. Since zcF(z')~ = a,+l 

for all i �9 {0 . . . .  , N - 2 }  and the order of SF is N, then a0r~.(z') E SF. It follows 

that F(aox ' )  = z' for at least one x' �9 A ~. This completes the proof. | 

Let F : A N ~ A r~ be positively expansive. For a l . .  "aN-1 �9 L N - I ( S F )  define 

(3.1) k l ( a l . .  " a N - l )  = card({ ao �9 A~: aoa l . .  "aN- i  �9 LN(SF) }). 

By Lemma 3.4, using the conjugacy of F with a CA of type (El) described at 

the beginning of this section, one gets 

(3.2) k l ( a l ' ' ' a N - 1 )  = card({ ao �9 Ar: ao I b l " ' b N - 1  }) 

for any choice of the words bl . . . . .  bN-  i E A ~ such that f* (bl . . .  bN- l ) (0, r - 1) = 

a,+l, i �9 {0 . . . . .  N - 2}. On the other hand, for ao E A ~ and bl . . . . .  bN-1 E A ~ 

such that ao I_, bl'" "bN-1 define 

(3.3) k2(a0 ; b l ' " b N - 1 )  = card({ w �9 A~(N-1): f ( aow)  = b l ' " b N - 1  }). 

LEMMA 3.5: Let F : A n --, A n be positively expansive. The map  k2(. ; .) is 

constant over the pairs o f  words (a0 ; b l . . ' b N - l )  E A r x ( K )  N-1 such that  

ao I_. b l ' "  bN- l .  

Proof'. Since the statement is about the combinatorics of words with length a 

multiple of r, assume F is of type (El). 

Put provisionally c = m i n ( k 2 ( a o ; b l . . . b N _ l ) ) ,  where ( a o ; b l . . . b N - 1 )  e 

A x A N-1 and ao ~ b l . . ' b N - 1 .  Let (ao;bl""bN-1)  be such that  

k:(ao; bl-" bN-1) = c. Then there exist exactly c different words w l , . . . ,  wc E 

A N-1 such that f(aoW~) = bl." "bN-i  for all i �9 {1 . . . .  ,c}; let a~ and "r~ be the 

first and last letters of wi. 

By Proposition 3.2, for every/3 E A there is a unique a(/3) �9 { a l , . . . ,  ac} such 

that aoa(3) ~ b l ' "  DN-I~" Moreover, if v �9 A N - l  is such that f (a ( j3 )v )  = 

b 2 " .  bN-lj3 then one of the words wi, i E {1, . . .  ,c} must be a prefix of a(~3)v. 

There are exactly c card(A) words of length N having each one a prefix in the 

family {wl . . . . .  we}. Therefore, we conclude that 

ccard(A) _> Z k2(a(3); b2"'" DN-I~). 
3EA 
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Since c is minimal, it follows that for all/3 E A, k2(a(~3); b2"" "bg-1/~) = c. 

We have proved that if ao ~ bl"" "bN-1 and k2(~o ; b l "  "bg-1) = c, then for 

any a, ~3 E A such that ~oa ~ bl"" "bg-1/3 one has k2(a ;b2..  "bg-l~3) = c. 

Now, let (ao ; b l . . .  bN-1) �9 A x A N-1 be such that ao ~ b l . . .  bg-1 and con- 

sider t31 �9 A such that f ( 'hao)  = ~1. Then, ~oWl ~ bl" '"  bN-1/~lbl" ". bg-2 and 

wlao is the unique word of A N which satisfies fiowlao ~ bl" '"  bN-1/~lbl "'" bg-1.  

Applying this last result N times in order to reach the pair (ao ; b l . . .  bN-1) we 

deduce that k2(ao ;b l . . "  bg-1) = c, which implies the result. | 

The constant defined above will be denoted by k2. 

PROPOSITION 3.6: Let F: A N ~ A N be positively expansive. 

kl('): L N - I ( S F )  ~ N is a constant denoted by kl and card(A) ~ = kl k2. 

Then 

Proof'. Keep the notations from the last lemma. Let b l , . . . ,  bN-1 E A ~. Define 

ai+l = f i (bl"  . .bN_l)(O,r - 1) for i E { 0 , . . . , N  - 2}. By Proposition 2.1, 

card({ w C A~N: f (w)  = 51. . .bN-1 }) = card(A) ~, hence 

card(A)* = Z k2(ao ;b l . . -bN-1)  

a o E A  r :ao l--*bt...bN_l 

= k2 card({ ao e A~: ao ~ b l ' " b g - 1  }). 

Finally, from equality (3.2), we conclude that 

card(A) ~ 
k l ( a l ' " a N - 1 )  = card({ ao E A: ao ~ b l . . . b N - 1  }) - k2 | 

In Example 1 the value of kl is card(A) ~ and in Example 2 it is card(A) ~-1. 

We shall see in Section 4 that for any kl, k2 E l~ such that k2 divides an integer 

power of kl we can construct a CA of type (El) where the cardinality of the 

alphabet is equal to kl �9 k2. 

Here are the two first topological consequences of the results above: 

COROLLARY 3.7: Let F: A N ~ A N be positively expansive. Then htop(A N, F) = 

h t o p ( S F )  ---- log kl. 

Proof'. This follows immediately from Propositions 2.3 and 3.6. | 
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THEOREM 3.8: Let F : A N --* A N be positively expansive. Then F is 

topologically mixing and SF is a mixing SFT. 

Proof: By recoding we can suppose that F is of type (El).  Since by Proposition 

2.3, (A N, F)  is conjugate to (SF, a), it is enough to prove that SF is mixing. 

Theorem 3.3 tells us SF is a SFT; recall N is the order of SF. To show SF 

is mixing it is enough to find a constant to �9 5] such that for all t _ to and 

W ---- W O ' ' ' W N - 2 ,  U) ---- ?~VO'" "?~)N-2 �9 L N - I ( S F ) ,  there exists u �9 A t satisfying 

WUCV �9 L ( S F )  �9 

First observe that there is a constant mo, that we choose larger than 3N, such 

that  if x, y �9 A N satisfy F~(x)(O) = F~(y)(O), i = 0 , . . . ,  m0 - 1, then 

F~ - 1) . . .  F N - 2 ( x ) ( N -  1) = F ~  1) . . .  FN-2(y) (N - 1); 

this is proved by applying Lemma 2.4 repeatedly. In other words this means that  

the first mo coordinates of rE(x) completely determine the first N - 1  coordinates 

of rE(aN-Ix) .  

Fix a point x e A s in such a way that  w is a prefix of (Fi(x)(N - 1))ies, that  

is, w = F ~  1 ) . . . F N - 2 ( x ) ( N  - 1). One can do this because w e L(SF). 

Put  v = F~ .. .Fm~ = ~ ' ,  with [~'] = N - 1 .  Of course v e L(SF) 

too. Now we forget about x and only keep v in mind. 

Now consider another point ~ �9 A s such that ~t = FO(~:)(0). . .FN-2(~)(0) 

and ~ = F~  . . .  FN-2 (&) (N-1 ) .  To construct it, since ~ and 5 '  belong 

to LN-1 (SF), we only have to concatenate a preimage of ~ of length N -  1 with 

a preimage of length N - 1 of 5 ,  then arbitrarily complete this word to the right 

into a configuration. Let 7rf(~) be the unique element of SF associated to &. 

Since the order of SF is N, one has VrF(X) �9 SF. Since F is expansive there is 

y �9 A s such that rF(y) ---- ~)rF(X) and Fm~ = x. But since v is a prefix 

of length mo of rE(y), then by the observation above w is a prefix of rF(aN-ly);  

therefore F ~  1) . . .  F m ~  1) = wu(v �9 L(SF). 

Setting to = m0 - 2(N - 1) and repeating the same construction for m > m0 

completes the proof. | 

3.2 PROPERTIES OF THE UNIFORM MEASURE. The flows considered until now 

are not necessarily bijective. The canonical way to make them so is to consider 

their natural extensions (see for instance [CFS]). The n a t u r a l  e x t e n s i o n  of a 

flow (X, T) is the flow (~:, T), where X = (~ = (x (~ x(1), . . . )  �9 Xr~: for all i > 
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O, T ( z  (~+1)) = z (i)} and T((z(~ = (T(x (~176  O) . . . .  ). :F is ob- 

viously an automorphism of X. The flow (X, T) is a factor of ()(, T) for the 

projection with respect to the first coordinate. Let/~ be a T-invariant measure, 

and Y be the Borel sigma-algebra on X. We define/5 over the sigma-algebra/~, 

generated by the family C (i) = {& E )(: x (~) E C}, C E B, by: /5(C (i)) = #(C). 

The natural extension of a one-sided subshift S is the two-sided subshift S such 

that L(S)  = L(S) .  Thus, the natural extension (~N, ~) of a positively expansive 

CA is conjugate to (SF, a). Recall A denotes the uniform measure on A N and 

~ F  = 7fF('~)- 

THEOREM 3.9: Let F: A N ~ A N be positively expansive. Then h~(AN, F) = 

h~F(SF ) = 1ogkl = htop(A •, F). 

Proof." By conjugacy we only have to consider the case where F is of type (El). 

Recall that SF is of order N. Since (A ~, F, A) is conjugate to (SF, a, AF), by 

equality (2.1) we have to compute 

h ~ F ( S F ) =  l i r a - 1  E AF([w]o)lOgAF([w]o). 
n ~ o o  n 

toEL.(SF) 

Fix n > N - 1. For w = Wo'" "wn-1 E L,~(SF), let us show first that AF([w]o) 

depends only on n and the last N - 1 letters of w. By definition, 

= 

_ 1 card({w' E An: card(A)" f i ( w t ) ( O )  "~ w i '  i : 0 , . . .  , n  -- 1}). 

Denote by u = uo ' .  "uu-2  the suffix of length N - 1 of w and by k*(u) the 

cardinality of the set 

S(u) = {v E A N - l :  ff(v)(O) = ui, i = O , . . . , U -  2}. 

By Lemmas 3.4 and 3.5, for each v E S(u)  there exist k~ -N+I words w' E A"  

such that f i(w')(O) = wi, i = 0 . . . .  ,n  - 1, and f n -U+l (W' ) (O ,N  - 2) = v. 

Therefore 

card({w' e An: f i(w')(O) = w~, 

and 

(3.4) 

i = O, n -  1}) = k*(u) k n-N+t  

1 
AF([w]o) = card(A)" k*(u) 
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which by Proposition 3.6 can be rewritten 

1 
AF([W]o) = k- T C k*(u), 

where C does not depend on n and w. Noticing that the last equality implies 

k?: Z ck*(u), 
wEL~(SF) 

by a simple computation one obtains hx F (SF) = log kl. | 

Consequently ~ and ~F are measures of maximal entropy for their respective 

flows. But 5y Theorem 3.8 SF is a mixing SFT, which by Parry's result ([P1] 

or theorem (19.14) in [DGS]) bears a unique measure of maximal entropy #max 

called the Parry measure; this measure must coincide with RE. 

The following corollary follows directly from the equality of RE with the Parry 

measure. 

COROLLARY 3.10: Let  F : A N ---* A ~ be positively expansive. Then the 

natural extension ( ~r~, ~ ,  RE) is measure-theoretically isomorphic to the full shift 

{0, . . . ,  kl - 1} z endowed with the uniform measure. 

Proof" Since ~F is the Parry measure of a mixing SFT, by [DGS] 

(17.15, corollary 4), (AN,.~,~F) is a Bernoulli system of entropy logkl. Now, 

by the Ornstein theorem (see [DGS] (12.10)) it is isomorphic to the full kl-shift 

endowed with the uniform measure. | 

Since ~r  is a Parry measure, it is Markov, and therefore has some probabilistic 

properties of asymptotic independance that may be exploited for the study of A. 

Some additional combinatorial properties, which will be used farther, can be 

deduced from the equality AF = #max. Let s*: A* --* A g - 1  be the map that 

gives the suffix of length N - 1 of a word; for each automaton of type (El) let 

k*: A N-1 ~ N be the map associating to each u C A N-1 the cardinality of the 

set S(u)  = {v E A N - l :  f i (v)(O) = Ui, i = 0 . . . .  , N - 2}. By subsection 2.1, we 

know that for a positively expansive CA, F, SF is conjugate to a Markov system 

S~ C ((Ar)N-1)Z; call ME its transition matrix. 

COROLLARY 3.11: Let  F be a CA o f  type (El). Then (k*(w) ; w E L N - I ( S F ) )  

is a right eigenvector o f  MF for the eigenvalue kl.  
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Proos First, by Proposition 3.6 and equality (3.4), for each word 

w �9 L,+N-I(SF),  n > 0 one has 

k*(s*(w)) 1 
(3.5) Av([W]o)- card(A)N_ 1 k~" 

The isomorphic image of A on S~ has maximal entropy; it is defined for all 

w' ' ' L , (S~) ,  i Z, by: : W 0 . �9 . W n _  1 �9 �9 

= I l I I I I A'([w']i) PF(Wo,Wl)PI:(Wl,W'2) "'" Pv(w,,_2,w,,_a) Ar(~,~_a), 

k'(w) 
A F ( w ) -  card(A)N_l 

where 

for all w,~  �9 LN-I(SF).  

1 Mp(w, ~), and Pv(w, ff') = 

On the other hand, since the sum of the columns of MF is kl, the associated 

Parry measure, denoted by #p, satisfies the following property: for all i E 7/., 

w C LN-I(SF),  pp([w]i) = v(w), where (v(w); w e LN(SF)) is a normalized 

right eigenvector of MF for the eigenvalue kl ([DGS]). Identifying /./p and A~, 

one gets 

(3.6) ~ k*(s '(wa)) = k, k*(w), 
{ a E A :  w a E L N ( S F ) }  

in other words (k*(w) ; w E LN-1 (SF)) is an eigenvector of MF for kl. I 

In particular, if N = 2, Corollary 3.11 implies that for all a E A, 

card{b E A : ab E L2(SF)} = kl. 

3.3 FURTHER COMBINATORIAL PROPERTIES. We just  proved that the natural 

extensions of positively expansive one-sided cellular automata, endowed with the 

uniform measure, are metrically isomorphic to Bernoulli systems. We now go 

on with the combinatorial study, which allows us to prove that the canonical 

factors of positively expansive one-sided CA are shift equivalent to full shifts, 

but also leads to some arithmetic obstructions to expansiveness which we use for 

obtaining a necessary and sufficient condition in Proposition 4.2. 

The following result is a quantitative version of Theorem 3.8. Recall that M r  

denotes the incidence matrix of the Markov system S~ C (A N-1)Z conjugate to 

SF; the notations k* and s* have been introduced before Corollary 3.11. 
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PROPOSITION 3.12: Let F : A s ~ A s be positively expansive. There exists 

to > N such that  for all t > to and w , w '  e L N - I ( S F ) ,  

M ~ ( w ,  w') = ct(w) - card(A)N_l.  

Proo~ Without loss of generality assume that F is of type (El).  By Theorem 

3.8 and the existence of the transposed flow F (Lemma 2.4), there exists to > N 

such that M~ > 0 for all t _> to, and that for all x E A n the words 

F ~  1 ) . . . F N - 2 ( x ) ( N -  1) and x(0, N -  2) 

are uniquely determined by Fi(x)(O),  i = 0 . . . . .  to + N - 2. 

Fix w , w '  e L N - I ( S F )  and u = Uo.. "UN-2 E A N-1.  We shall prove that  

(3.7) M O(w,w') = Z k'(s'(v)), 
v~C, o (u,w) 

where 

y N  -- 1 

C t o ( U , W ) = { v E L t o + N _ 2 ( S F ) : u o v  .~ w, ]~(uOV)(O)=u~, i = O , . . . , N - 2 } .  

It is straightforward that Cto(U,W) ~ 0 for all u E A N - l ,  w E LN-I(SF). 

Let v = VO'"Vto+N-3 E Cto(U,W) and fix ,5 E A N-1 such that fi(fi)(0) = 

s*(v)i = vto-l+i, i = 0 , . . .  , N  - 2. Since 

MtF~ w') = card({5 E At~ w S w '  E L to+N-I (SF)} ) ,  

to prove (3.7) we only have to show, on the one hand, that once v is fixed, the 

choice of ~ determines ~ and, conversely, on the other hand, that u and w(vw' 

determine v. For a quicker understanding see Figure 3.1 below. 

By the same arguments as in the proof of Theorem 3.8 one shows that to any 

5 E A N such that  F~ .. .FN-2(~)(0) = w' there corresponds a unique z E 

A N with (i) F~ . . .  FN-2(z) (O)  ---- w, (ii) F t~ (uz) = fig, and (iii) Fi(uz)(O) = 

vi-1,  i = 1 , . . .  , t o + N  - 2 .  Recall that z only depends on u, 5, 5, and v. Putt ing 

= FN-I(z)(0) . . .  Ft~ e A to-N+1, 

then w(vw ~ E L(SF); we say that  ~ links up w with w ~ in the context of (u, v, ~). 
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Once v and 72 are fixed, z~ is unique. In fact, i f~ '  E A t~ links up w with w' 

in the context of (u, v, fi), then for all 5' E A N such that F~ . . .  Fg-2(5 ' )(0)  

= w' there exists a unique z ~ E A ~ such that 

F~ . . .Ft~ = w~J' w' and Ft~  ') = 5'. 

Choose 5 j = 5. Therefore ~5 ~ = fiS; then, since v has been fixed, and by using 

the expansiveness of F,  we deduce that uz ~ = uz  and z' = z. Finally, by applying 

F several times one concludes that ~ '  = ~ (recall that the block B in Figure 

3.1 is determined by u and w, and the block C by u, w and ~). Hence for each 

quintuple (w,w~,u,  v ,~)  there is a unique word ~ E A t~ which links up w 

with w' in the context of (u, v, fi). 

V :* 
W~ 

C 

Z 1 Z2 Z3 

"Z1 Z2 Z3 " 

Figure 3.1 

On the other hand, if ul and u2 are different words such that f i  (fij)(0) = s* (v)~, 

i = 0 , . . . ,  N - 2, j -- 1, 2, then the associated words z~j are necessarily different: 

the proof of this fact, closely related to the proof of the unicity of ~,  is left to 

the reader. Thus, once u E A N-1 has been fixed, to each v E Cto (u, w) we can 

associate exactly k*(s*(v)) words in {~ E At~ wCvw' E L to+N-I (SF)} .  

But every word of {~ E At~ w(vw I E L to+N- I (SF)}  is associated with a 

unique v E Ct0 (u, w) (it is uniquely determined by a suitable number of applica- 

tions of f when u and w ~ w '  have been fixed); we have thus obtained that  

M O(w,w ') : k*(s*(v)); 
veC~ o (u,w) 
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consequently M t~ (w, w') = Cto (w) only depends on w. 

To finish, by Corollary 3.11 we know that (k*(w); w e LN-I(SF)) is a right 

eigenvector of MF for the eigenvalue kl; then 

MtF~ w ') k*(w') = Cto(W) card(A) g-1  = ktl~ 
w'CLN-I(SF) 

so we deduce the result for t = to, and afterwards for t > to. | 

COROLLARY 3.13: Let F: A N --* A N be positively expansive, and let kl, k2 be 

the two integers such that htop(F) = lOgkl and card(A) ~ = kl k2. Then k2 

divides an integer power of kl. 

Proof." By recoding we can assume that F is of type (El).  Let w, w' E LN-I(SF) 

and L E N. If we follow the construction in Proposition 3.12 but with u E 

A N-I+L we obtain that for all t > to(L) 

M~(w,w') = card(A) L ~ k*(s*(v)), 

vE~,(u,w) 

where Ct(u, w) is defined in the same way as Ct(u, w) in the former proposition. 

On the other hand, by Proposition 3.12, 

M ~ ( w , w ' ) -  ki-N+lk*(W) 
kg-1 

hence 

kl -g+l  k*(w) = card(A)LK(t, w, u), 
kN-1 

where K(t ,w,u)  is a positive integer. Since k*(w) and k2 N-1 contain a fixed 

number of powers of prime numbers and they do not depend on t, then with 

L big enough we conclude that  kl has all the prime divisors of card(A). By 

definition k2 must divide some integer power of kl. | 

Recall that  two non-negative integer square matrices A and B are shift equiva- 

lent if there exist non-negative integer matrices R, S and a positive integer I such 

that (i) A .  R = R .  B, (ii) S .  A = B �9 S, (iii) A t = R .  S and (iv) B t = S -  R. 

Shift equivalence corresponds to the eventual conjugacy of the SFT XA and XB 

defined by the matrices A and B respectively, that is, (XA, a m) and (XB, a m) 

are conjugate for sufficiently large m (for more details about shift equivalence see 

[BMT]). 
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COROLLARY 3.14: Let F : A N ~ A N be positively expansive. Then MF is shift 

equivalent to [kl], where htop(F) --- log kl. In particular, (SF,  (T) iS eventually 

conjugate to ({0, . . . ,  kl - 1} z, (7). 

Proof: Let to > N be the constant given in Proposition 3.12 such that  

MtF~ ') = Cto(W) for any w, w' E LN- I (SF) .  From Corollary 3.11 and 

Proposition 3.6 one gets that  l = (1 , . . . ,  1) and r = (Cto(W); w E L N - I ( S F ) )  

are respectively left and right eigenvectors of MF associated to kl. Thus, MF" r 

--~ r .  k l ,  I .  M F  = kl  �9 l, r .  l = MtF ~ and I. r = k~ ~ These last equalities prove 

the corollary. I 

4. The multiplication by certain integers in base p 

The examples in this section are mainly here for illustration. In order to show 

that the cellular automaton of multiplication by k, endowed with the uniform 

measure, is a Bernoulli system, Corollary 3.10 is not needed: this results from 

the fact that  {0 , . . . ,  p - 1 }  N, endowed with the automaton, is an almost conjugate 

representation of the multiplication by k on the torus. Our purpose is to describe 

a family of positively expansive CA, derived from Arithmetics, that  are neither 

toggle automata, nor permutative in a weak sense like Example 2. 

Consider a cellular automaton F of type (El) and suppose that SF is a Markov 

system. We proved in the last section that there are constants kl, k2 E N, where 

k2 divides an integer power of kl, such that card(A) = kl k2. Furthermore, for 

all a E A, one has kl = card({a' E A: a ~ a'}) = card({a' E A: a' ~ a)),  and 

k2 = card({b E A: f(ab) = a')) for all a' E A such that a ~ a'. We construct 

positively expansive cellular automata for each pair of integers (kl, k2) satisfying 

the former conditions. For p E N put Ap = {0 , . . .  , p -  1}. 

First fix a pair (kl, k2) E N 2 and put p = kl k2 (for the moment we do not 

suppose that  k2 divides an integer power of kl). Each configuration of Ap N is the 

expansion in base p of a real number in the interval [0, 1]: it is proved in [BHM] 

that  for all k E N such that  k divides an integer power of p there exists a CA on 

the alphabet Ap, which represents the multiplication by k in base p. This follows 

from the fact that, under the last condition, the algorithm of multiplication by 

an integer in base p only depends on a finite number of carries. 

In particular, consider the case k = kl. Each integer a E Ap can be written 

a = fak2 +la where fa E Akl and la E Ak2, or also a = f~kl + [~ with f~ E Ak2 

and [~ E Akl. It is not difficult to check that  the set of carries obtained in the 
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multiplication by kl in base p is equal to Ak:. Let a E Ap: independently of the 

value of r ~ A~t, the carry obtained when we multiply a by k~ and add r is always 

f~; in fact, k l a + r  = k~k2.fa+l~k~ + r  = .f~p + (/~k~ + r ) ,  where l~k~ + r  <_ p -  1. 

The onto cellular automaton F~ ,~ representing the multiplication by k~ in base 

p is then defined by 

(4.1) Fk~,k2(x)i = kl l~, + f~,+,, x 6 A~, i E N. 

It is clear this formula defines a cellular automaton with radius 1. The corre- 

sponding map is always right resolving: recall that a CA F: A N ~ A N is right 

resolving if for any a, b, B E A r such that a ~ b there is a unique a(~3) E A r such 

that an(j3) ~/bj3. Let us prove the former statement: choose a, a I E Ap such that 

a f ~ 2  a I. From the definition of F~ 1,k2 one gets a' = l,,kl +/~, ,  and if b E A~ 

satisfies fkl ,k2 (ab) = a ~ then b = [o, k2 + lb. In particular, the value of a' does not 

depend on f , .  Consequently, for all b' E Ap there is a unique b E Ap such that 

ab I~-r albt: recall that b = [,,k2 + ]b,. 

PROPOSITION 4.1: Let F: A N -~ A N be a right resolving cellular automaton. 

Then SF is a Markov system. 

Proof'. We have to prove that al . . .  an E Ln(SF) whenever ai --* f ai+l for 

i -- 1 , . . . , n -  1. Let us use induction on n. Let bn-i  E A r be such that  
! 

f ( a . _ i ,  b,~_l) = a,~ (it exists by hypothesis). Since an-2 --* a,~-i and F is right 

resolving there is a unique b,,_2 E A r such that f (an-2,  b,~-2) = an-1 and b , -2 / -*  

b , - l .  Using the same argument inductively we find a word bl .." b,~-i E A ~(n-l) 

such that  bi ~/bi+l  for i = 1 , . . . ,  n - 2, and .f(ai, b~) = ai+l for i = 1 , . . . ,  n - 1. 

Now use the induction hypothesis to conclude that  a l . .  "an 6 L , (SF) .  I 

In particular the last proposition implies that SF~:.~2 is a Markov system. 

We proved in Corollary 3.13 that expansiveness implies k~ = k2 k3 for some 

integers ~ E N, k 3 E N. In particular, if kl and k2 are relatively prime Fk~,a2 is 

not expansive. 

PROPOSITION 4.2: The cellular automaton Fkl,k2 is positively expansive if and 

only if k2 divides a positive power of kl. 

Proo~ The necessary condition follows directly from Corollary 3.13. Conversely, 

suppose that  k2 divides a positive power of kl; then kl = p~ "--p~' and k2 = 

p~l . . .p~'  , where si > 0,~i _> 0, i = 1 , . . . , t ,  and P l , . . . , P t  are prime numbers. 
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Consider the sequence (mi)ieN defined inductively by: (i) mo = k2, (ii) for all 

i > 1, mi -- MCM(mi_I, kl) : kl. One proves by induction that  the prime factors 

of mi are among those of kl, so mi < mi-1 whenever mi-1 does not divide kl. 

Consequently, there is a smallest integer T E 1~1 such that mT divides kl (and for 

i > T, mi = 1). Also, for all i, mi divides m~-l. Denote by rhi and ni the integers 

such that mirhi = p and nimi  = k2. To each mi, i = 0 , . . . , T ,  associate the 

partition Pi = {C0,i, . . . ,  C,~,-1,i} of Ap, where Cj# = { j m ~ , . . . ,  (j  + 1)mi - 1}, 

j = 0 , . . . ,  rhi - 1. Notice that  Pi+l is a refinement of P~. Fix i E {0 , . . . ,  T}. We 

shall prove the following property: let us consider a, a r, b, b r E Ap; if on the one 

hand a and b, and on the other hand a t and b ~, belong to the same atom of the 

f~.~2 b f ~ 2  b ~, then a and b belong to the same atom of partition Pi, and a a ~, 

the partition Pi+l. 

Let C be an atom of Pi. There exist f E Ak~, f i  E An~ such that each a E C 

can be written a = fk2 + f lmi  + f~,i+lm~+l + I~,~+1 , where f~,~+l E A,m/m~+ ~ 

and l,,i+l E Am~+a. Consider a, b E C such that f~,i+l < fb,i+l; in other words 

they are not in the same atom of the partition Pi+l; denote by Ca and Cb the 

atoms of Pi+l containing a and b. It follows directly from the definition of Fk~ ,~ 

that the set of a ~ ~ Ap such that a" f~ .~  a~ for some a" ~ Ca is 

S ,  = {kl  f i  mi + kl  f~,i+l m~+l + kl  l + r: l E A,m+ 1, r e Akl }. 

Analogously, 

Sb = {kl  f l  mi + kl fb,i+l mi+l + kl l + r : 1 E Am,+1, r E Akl}. 

A simple computation shows that 

S~, = [jami, j~mi + MCM(mi, kl) - 1] and Sb = [jbrni,jbmi + MCM(mi, kl) - 1], 

where 

ja = kl  f i  + fa,i+l MCM(mi, kl) and jb = kl f i  + h, i+l  MCM(mi, kl) 
mi mi 

([i, j] denotes the interval of integers from i to j) .  Then Sa and Sb are unions of 

atoms of 7)i. Furthermore, since .f,,i+l < fb,i+l, then S~ and Sb are disjoint. We 

proved that  a and b do not have a successor in the same atom of Pi whenever 

a, b E C and C~ # Cb, which implies the desired property. 
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Suppose now that (a~)~e~ and (bi)ier~ E SFk,.~2 are such that f ~  = fb~ for all 

i E N; in other words, for each i, a~ and b~ are in the same atom of P0- Applying 

the last result T times, we deduce that for all i E N, ai and bi belong to the same 

atom of the partition PT+I, which is the discrete partition, so (ai)ier~ = (bi)ie~. 

Since the radius of Fk~ ,k2 is 1, this establishes the expansiveness of the CA. | 

COROLLARY 4.3: Let kl and k2 be natural integers such that k2 divides a power 

of kl. Then SF~.~2 is conjugate to the one-sided full shift over kl letters. 

Proof'. It follows from the definition of SFk~.k2 and from Proposition 4.1 that  

there is a partition P = {A1, . . . ,  Ak~} of A such that card(Ai) = k2 for i = 

1 , . . . ,  kl and for any b, b' E Ai, a E A fk~,k~ (ab) = fk~,k2 (ab'). Define the map 

~Fk~,~ : SF~,k2 -~ {1 , . . . , k l}  ~ by ~rFk~,~(X)j = i if and only if xj E A~ (j E N). 

By Lemma 3.2, ~Fk~,~2 is onto. To prove it is 1-to-1 consider x l , x  2 E SFk~,~2 

such that  ~gk~,k2 (xl) = ~F~,~2 (X2)" Then for all i ~ N, x] and x~ belong to the 

same atom of the partition P, that is, for all a ~ A, f~ ,~ (ax~)  = f~ ,~ (ax~) .  

Thus there exists a point x ~ SF~,~ such that/'k~,~2 (x) = x I = x 2. The result 

follows from the expansiveness of Fkl ,k2" | 

Proposition 4.2 and Corollary 4.3 state a necessary and sufficient condition 

for the cellular automaton representing the multiplication by k in base p to be 

topologically conjugate to a full shift over k symbols (which is, by the way, a 

more convenient symbolic representation of this multiplication !). 

5. Comments  and questions 

1. We mention that expansiveness plays an important part in the classification 

of CA by Gilman [G] as well as in the recent topological classification of Kflrka 

[K~]. 

2. Positively expansive one-sided CA maps form a strict subset of the family of 

right-closing maps; the latter have been widely used in Symbolic Dynamics. It 

is natural to ask whether some of the results in this article can be extended to 

this family: for instance, is the subshift SF always of finite type in this case? Of 

course right-closing CA are not generally mixing (the identity map is not) and 

SF is not always shift equivalent to a full shift (multiplication by 2 in base 6). 

3. Recently M. Boyle, D. and U. Fiebig found an expansive CA the canonical 

factor of which is not conjugate to a one-sided full shift (private communication). 
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4. In [Cou] M. Courbage proved that a particular invertible CA, with the prop- 

erty of (non-positive) expansivity, possesses most of the properties we obtain 

here. Can this be proved for all (non-positively) expansive automorphisms of the 

full shift ? 
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